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Abstract

In this work, some rules for resistance distances of a graph G are established.
Let S be a set of vertices of G such that all vertices in S have the same
neighborhood N in G − S. If |S| = 2, 3, 4, simple formulae are derived to
compute resistance distances between vertices in S in terms of the cardinality of
N. These show that resistance distances between vertices in S depend only on the
cardinality of N and the induced subgraph G[S]. One question arises naturally:
does this property hold for S with arbitrarily many vertices? We answer this
question by the following reduction principle: resistance distances between
vertices in S can be computed as in the subgraph obtained from G[S ∪ N ] by
deleting all the edges between vertices in N.

PACS numbers: 02.10.Ox, 84.30.Bv
Mathematics Subject Classification: 05C12, 05C90

1. Introduction

On the basis of electrical network theory, a novel distance function, resistance distance as the
effective resistance between two vertices, was identified by Klein and Randić [11] a decade
back. Let G be a connected graph with vertex set V and edge set E. Suppose that vertices in
G are labeled as 1, 2, . . . , v, where v = |V |. Then the resistance distance between vertices i
and j , denoted by rij (if more than one graph is considered, we use rG

ij to avoid confusion), is
defined to be the effective resistance between them as computed with Ohm’s law when all the
edges of G are considered to be unit resistors.

As an important component of electrical circuit theory, effective resistance has been
extensively studied in physics and engineering. Meanwhile, as an intrinsic graph metric and
a relevant tool to characterize wave- or fluid-like communication between two vertices [9], it
is well studied in mathematical and chemical literatures [1–4, 7, 10, 12, 14, 15, 19–24].
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From now on, we denote the (i, j)-entry of a matrix M by mij . Now we introduce some
terminologies in graph theory and matrix theory. For a vertex i, let di denote the degree of i.
If U ⊂ V is any set of vertices, then G[U ] denotes the subgraph induced by U and G − U

denotes the graph obtained from G by deleting all the vertices in U and their incident edges.
The adjacency matrix A of graph G is a v × v matrix with aij equal to 1 if vertices i and j

are adjacent and 0 otherwise. Let D = diag (d1, d2, . . . , dv) be the diagonal matrix of vertex
degrees. The Laplacian matrix of G is L = D − A. A generalized inverse of a matrix A,
denoted by A+, is a matrix such that AA+A = A.

It is well known that L for a connected graph G has all positive eigenvalues except one that
is 0. Hence L is singular and does not have an inverse. However, L does have a generalized
inverse L+. A fundamental formula to compute resistance distance is given in terms of the
generalized inverse of the Laplacian matrix in [11]:

rij = l+
ii + l+

jj − l+
ij − l+

ji . (1)

Besides the generalized inverse of the Laplacian matrix, resistance distance can also be
computed in terms of Laplacian eigenvalues and eigenvectors [8], normalized Laplacian
eigenvalues and eigenvectors [5], spanning trees and spanning bi-trees [17] and random walks
on graphs [6]. Conversely, some important parameters, such as expected hitting times in
random walks on graphs, can be computed by an electrical approach using resistance distance
[18].

In this paper, first of all, we obtain a pair of formulae (theorems 2.2 and 2.3) analogous to
theorem C established in [11] (also theorem B in [9]), which may be viewed as general rules
for resistance distance, with different particular realizations for different particular choices of
M. In the following, by different choices of M, we establish a series of rules (theorems 3.1, 3.3
and 3.6). As an application, for any given set S with two or three or four vertices, if vertices in
S have the same neighborhood N in G − S, then resistance distances between vertices in S can
be easily computed in terms of the cardinality of N (theorems 3.2, 3.5 and 3.8). Motivated by
these results, we consider S with arbitrarily many vertices and obtain the interesting reduction
principle which can greatly simplify the calculation of resistance distances between vertices
in S: if S ⊂ V satisfies that all vertices in S have the same neighborhood N in G − S, then
resistance distances between vertices in S can be computed as in the subgraph obtained from
G[S ∪ N ] by deleting all the edges between vertices in N.

2. General rules

For a square matrix M, let Tr(M) denote the trace of M, i.e. the sum of diagonal elements of
M. Klein obtained the following result:

Theorem 2.1. [9] For a v-vertex graph G and an arbitrary v × v matrix M,
∑

i,j∈V

(LML)ij rij = −2 Tr(ML). (2)

In fact, theorem 2.1 was established earlier by Klein and Randić in [11], but in that article
the matrix M was required to be symmetric.

Following the method used by Klein for proving theorem 2.1, we now obtain a pair of
results analogous to theorem 2.1.
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Theorem 2.2. For a v-vertex graph G and an arbitrary v×v matrix M such that every column
sums to 0,

∑

i,j∈V

(ML)ij rij = −2 Tr(M). (3)

Proof. Substituting equation (1) into the left-hand side of equation (3) and bearing in mind
that L+ is symmetric (here L+ is the Moore–Penrose inverse of L), we have
∑

i,j∈V

(ML)ij
(
l+
ii + l+

jj − l+
ij − l+

ji

)

=
∑

i∈V

l+
ii

∑

j∈V

(ML)ij +
∑

j∈V

l+
jj

∑

i∈V

(ML)ij − 2
∑

i∈V

∑

j∈V

(ML)ij l
+
ji

=
∑

i∈V

l+
iiMiL1 +

∑

j∈V

l+
jj 1T MLT

j − 2
∑

i∈V

(MLL+)ii

where 1 is the vector with each element equal to 1, and Mi denotes the ith row of M. Since
1 is the 0-eigenvalue eigenvector to L and every column of M sums to 0, the first two terms
vanish. On the other hand, by the well-known property

LL+ = I − 1

v
J, (4)

and the fact that JM = 0 since every column of M sums to 0, where J is the matrix with all
elements equal to 1 and 0 is the zero matrix, we obtain that

−2
∑

i∈V

(M(I − J ))ii = −2 Tr(M(I − J )) = −2 Tr((I − J )M) = −2 Tr(M).

Hence the proof is complete. �

In the same way, we can prove the following result:

Theorem 2.3. For a v-vertex graph G and an arbitrary v × v matrix M such that every row
sums to 0,

∑

i,j∈V

(LM)ij rij = −2 Tr(M). (5)

Remark 1. The left-hand side of equation (2) in theorem 2.1 is symmetric and the right-hand
side takes the trace of ML into account. The obtained pair of results in the present paper
relate the trace of M respectively to the sum of all elements of ML and LM , weighted by the
resistance distances.

Remark 2. Theorems 2.2 and 2.3 can also be derived from theorem 2.1 directly. State the
relation in theorem 2.1 as

∑

i,j∈V

(LXL)ij rij = −2 Tr(XL), (6)

where X is an arbitrary v × v matrix. For any v × v matrix M each of whose columns sums to
0, put X = L+M in equation (6). We have

∑

i,j∈V

(LL+ML)ij rij = −2 Tr(L+ML) = −2 Tr(LL+M), (7)

3
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where the second equality holds since for any two v × v square matrices A and B,

Tr(AB) =
v∑

i=1

v∑

j=1

aij bji =
v∑

j=1

v∑

i=1

bjiaij = Tr(BA).

Substituting equation (4) into equation (7), we arrive at
∑

i,j∈V

(ML)ij rij = −2 Tr(M).

Hence theorem 2.2 is derived from theorem 2.1. Similarly, theorem 2.3 can also be derived
from theorem 2.1 by putting X = ML+ for M any matrix each of whose rows sums to 0.

3. Other rules and applications

For a vertex i, the neighborhood of i in a graph G, denoted by NG(i), is defined to be the set
of all vertices adjacent to i in G. It should be pointed out that i may not belong to G.

On the basis of the above theorems, by particular choices of M, we can obtain a series of
results in the following. For convenience, we divide the rest of this section into three parts.

3.1. The case of two vertices

In this part, we consider any two vertices i and j . Let S = {i, j}.
Theorem 3.1. Let i, j be vertices of G. Then

(di + dj )rij +
∑

k∈NG(i)\NG(j)

(rik − rjk) +
∑

k∈NG(j)\NG(i)

(rjk − rik) = 4. (8)

Proof. We choose M in theorem 2.2 such that mii = mjj = 1,mij = mji = −1 and other
elements are all 0. Then our result can be obtained directly. �

In particular, if i and j have the same neighborhood N in G−S, i.e. NG−S(i) = NG−S(j) =
N , then it is straightforward to obtain the following result according to theorem 3.1.

Theorem 3.2. Let i, j be vertices of G such that they have the same neighborhood N in G−S

and let |N | = n. If i and j are adjacent, then

rij = 2

n + 2
, (9)

otherwise,

rij = 2

n
. (10)

For example, we compute resistance distances for the complete graph Kv and complete
bipartite graph Ku,v by theorem 3.2. For Kv and ∀ i, j ∈ V , by equation (9),

rij = 2

v − 2 + 2
= 2

v
.

This coincides with the result obtained by Lukovits et al in [13]. For Ku,v , suppose that V1

(resp. V2) is the color set with u (resp. v) vertices. For ∀ i, j ∈ V1, by equation (10),

rij = 2

v
.

Similarly, we can obtain that for ∀ i, j ∈ V2, rij = 2
u

. This allows us to verify the results
obtained by Klein in [9].

4
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Figure 1. The isomorphically distinct graphs on three vertices.

3.2. The case of three vertices

Now we consider any three vertices i, j and k. Let S = {i, j, k}.
Theorem 3.3. Let i, j, k be vertices of G. Then

v∑

s=1

((ljs − lks)ris + (lis − ljs)rjs + (lks − lis)rks) = 0. (11)

Proof. The result follows from theorem 2.2 by choosing M such that mij = mji =
mkk = 1,mik = mki = mjj = −1 and other places are all 0. �

In the following, we also consider the special case that i, j and k have the same
neighborhood N in G − S, i.e. NG−S(i) = NG−S(j) = NG−S(k) = N .

Theorem 3.4. Let i, j, k be vertices of G such that they have the same neighborhood N in
G − S. Then

(di + dj − lij − ljk)rij − (di + dk − lik − ljk)rik + (lik − lij )rjk = 0. (12)

Two graphs G and H are isomorphic, written G ∼= H , if there exists a bijection
θ : V (G) → V (H) such that ij ∈ E(G) if and only if θ(i)θ(j) ∈ E(H) for all i, j ∈ V (G).

As shown in figure 1, there are four isomorphically distinct graphs on three vertices. For
1 � i � 4, if G[S] ∼= Gi , we assume that the corresponding vertices under the isomorphism
have the same labeling. In the following, rij , rik and rjk are obtained in terms of the cardinality
of N according to different cases of G[S].

Theorem 3.5. Let i, j, k be vertices of G such that they have the same neighborhood N in
G − S and let |N | = n.

(i) If G[S] ∼= G1, then

rij = rik = rjk = 2

n
;

(ii) if G[S] ∼= G2, then

rij = 2

n + 2
, rik = rjk = 2n + 3

n(n + 2)
;

(iii) if G[S] ∼= G3, then

rij = rik = 2n + 3

(n + 1)(n + 3)
, rjk = 2

n + 1
;

5
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(iv) if G[S] ∼= G4, then

rij = rik = rjk = 2

n + 3
.

Proof. (i) and (iv) can be obtained directly by equations (9) and (10), respectively. Now we
prove (ii). If G[S] ∼= G2, then it is obvious that rik = rjk by symmetry. Since i, j satisfy
the condition of theorem 3.2, hence the first equality of (ii) holds. On the other hand, by
equation (12) and the fact that di = dj = n + 1, dk = n , we have

(2n + 3)rij − (2n + 1)rik + rjk = 0. (13)

Substituting rij = 2
n+2 into equation (13) and solving for rik , we find the second equality of

(ii). (iii) can be proved in a similar way as the proof of (ii) by theorems 3.2 and 3.4. �

3.3. The case of four vertices

Now we consider any four vertices i, j, k and l. Let S = {i, j, k, l}.
Theorem 3.6. Let i, j, k, l be vertices of G. Then

v∑

s=1

((lls − lks)ris + (lks − ljs)rjs + (ljs − lis)rks + (lis − lls)rls) = 4. (14)

Proof. The proof proceeds from theorem 2.2 with the choice of M such that mil = mli =
mjk = mkj = 1,mik = mki = mjj = mll = −1 and other elements are all 0. �

In particular, if i, j, k and l have the same neighborhood N in G − S, i.e. NG−S(i) =
NG−S(j) = NG−S(k) = NG−S(l) = N , we immediately have the following result according
to theorem 3.6.

Theorem 3.7. Let i, j, k, l be vertices of G such that they have the same neighborhood N in
G − S. Then

(lik + lj l − lij − ljk)rij + (lij + lkl − di − dk)rik + (di + dl − lil − lkl)ril

+ (dj + dk − lij − ljk)rjk + (lij + lkl − 2lj l)rjl + (lik + lj l − lil − lkl)rkl = 4

(15)

By graph-theoretical terminology, there are 11 isomorphically distinct graphs on four
vertices as shown in figure 2. For 1 � i � 11, if G[S] ∼= Hi , we assume that the corresponding
vertices under the isomorphism have the same labeling. In the following, resistance distances
between pairs of vertices in S are obtained, which are expressed in terms of the cardinality
of N.

Theorem 3.8. Let i, j, k, l be vertices of G such that they have the same neighborhood N in
G − S and let |N | = n.

(i) If G[S ′] ∼= H1, then

rij = rik = ril = rjk = rjl = rkl = 2

n
;

(ii) if G[S ′] ∼= H2, then

rij = 2

n + 2
, rkl = 2

n
, rik = ril = rjk = rjl = 2n + 3

n(n + 2)
;

6
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Figure 2. The isomorphically distinct graphs on four vertices.

(iii) if G[S ′] ∼= H3, then

rij = rkl = 2

n + 2
, rik = ril = rjk = rjl = 2(n + 1)

n(n + 2)
;

(iv) if G[S ′] ∼= H4, then

rij = rik = 2n + 3

(n + 1)(n + 3)
, rjk = 2

n + 1
, ril = 2(n + 2)

n(n + 3)
,

rjl = rkl = 2n2 + 7n + 4

n(n + 1)(n + 3)
;

(v) if G[S ′] ∼= H5, then

rij = rkl = 2n2 + 7n + 4

(n + 2)(n2 + 4n + 2)
, ril = rjk = 2n2 + 9n + 8

(n + 2)(n2 + 4n + 2)
,

rik = 2(n + 1)

n2 + 4n + 2
, rjl = 2(n + 3)

n2 + 4n + 2
;

(vi) if G[S ′] ∼= H6, then

rij = rik = rjk = 2

n + 3
, ril = rjl = rkl = 2(n + 2)

n(n + 3)
;

(vii) if G[S ′] ∼= H7, then

rij = rik = ril = 2(n + 2)

(n + 1)(n + 4)
, rjk = rjl = rkl = 2

n + 1
;

(viii) if G[S ′] ∼= H8, then

rij = rjk = rkl = ril = 2(n + 3)

(n + 2)(n + 4)
, rik = rjk = 2

n + 2
;

7
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(ix) if G[S ′] ∼= H9, then

rij = 2

n + 3
, rkl = 2(n + 2)

(n + 1)(n + 4)
,

ril = rjl = 2n + 5

(n + 1)(n + 3)
, rik = rjk = 2n2 + 9n + 8

(n + 1)(n + 3)(n + 4)
;

(x) if G[S ′] ∼= H10, then

rij = rjk = rkl = ril = 2n + 5

(n + 2)(n + 4)
, rik = 2

n + 4
, rjl = 2

n + 2
;

(xi) if G[S ′] ∼= H11, then

rij = rik = ril = rjk = rjl = rkl = 2

n + 4
.

Proof. We only prove (v) and (ix), which are somewhat more complicated than the others to
prove. The others can be proved in a similar way.

(v) If G[S ′] ∼= H5, then by symmetry rij = rkl and ril = rjk . Suppose that
rij = rkl = r1, ril = rjk = r2, rik = r3 and rjl = r4. Note that di = dk = n + 2 and
dj = dl = n + 1. By applying theorem 3.1 respectively to pairs of vertices {i, j}, {j, k}, {i, l}
and {j, l}, we can obtain the following four equations:

(2n + 5)r1 − r2 + r3 = 4, (16)

r1 − r2 + (n + 3)r3 = 2, (17)

r1 + (2n + 3)r2 − r4 = 4, (18)

r1 − r2 − (n + 1)r4 = 2. (19)

Solving the linear system formed by equations (16)–(19), we can obtain the desired result.
(ix) If G[S ′] ∼= H9, then by symmetry rik = rjk and ril = rjl . Note that di = dj =

n + 2, dl = n + 1 and dk = n + 3. By theorem 3.2, we readily have

rij = 2

n + 3
.

Suppose that rkl = r1, rik = rjk = r2 and ril = rjl = r3. By equation (15), we have

rij + (2n + 2)r3 = 4.

Hence,

r3 = 2n + 5

(n + 1)(n + 3)
.

By applying theorem 3.1 respectively to pairs of vertices {i, k} and {k, l}, we have the following
system of two equations:

r1 + (2n + 7)r2 = 4 + r3, (n + 3)r1 + r2 = 2 + r3.

Solving this system for r1 and r2, we have our desired result. �

For example, we compute resistance distances between vertices in S in the graph G as
shown in figure 3. It is obvious that G[S] ∼= H5 and n = 2. Then by theorem 3.8 (v), it is
easy to obtain that

r12 = r34 = 13
28 , r13 = r24 = 17

28 , r14 = 5
7 , r23 = 3

7 .

Theorems 2.1, 2.2 and 2.3 can be viewed as general rules. The results obtained in the
above and in [9] are all derived from them by particular choices of M. We believe that some
more interesting results may be obtained by other choices of M.

8
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Figure 3. The graph G and the corresponding graphs G∗ and G0.

4. The reduction principle

Given a set S of two or three or four vertices, if vertices in S have the same neighborhood N in
G − S, then by theorems 3.2, 3.5 and 3.8, resistance distances in S can be computed in terms
of the cardinality of N, in other words, they can be uniquely determined by the cardinality of
N and the subgraph G[S]. Does this proposition hold for S with arbitrarily many vertices?
More precisely, if S ⊂ V such that vertices in S have the same neighborhood N in G − S, can
resistance distances between vertices in S be uniquely determined by the cardinality of N and
the subgraph G[S]? In what follows, we give a positive answer to this question.

Before stating our results, we recall three important properties about effective resistance
in electrical network theory, which will be used later.

(i) Serial connection rule: resistors that are connected in series can be replaced by a single
resistor whose resistance is the sum of resistors.

(ii) Parallel connection rule: resistors that are connected in parallel can be replaced by a
single resistor whose conductance (the inverse of resistance) is the sum of conductances.

(iii) Rayleigh’s monotonicity law [16]: the effective resistance between any two vertices is a
nondecreasing function of the edge resistances.

Let G∗ be the graph obtained from G[S ∪ N ] by deleting all the edges between vertices
in N. For example, see figure 3. Then we have the following result.

Theorem 4.1. Let S and G∗ be defined as above. Then for i, j ∈ S,

rG
ij = rG∗

ij .

Proof. We first show that our result holds if G[V \S] is complete. Impose a unit voltage
between vertices i and j . Voltages v(k) will be established at k = 1, 2, . . . , v. We claim that
vertices in N are at the same voltage. To see this, let k and l be any two vertices of N. By
Ohm’s law, the current ixy that flows from any vertex x to its neighbor y is equal to

ixy = v(x) − v(y)

1
= v(x) − v(y).

By Kirchhoff’s current law stating that the total current outflow any vertex is 0, we have
v∑

x=1
x 
=k

ikx =
v∑

x=1
x 
=k

(v(k) − v(x)) = 0.

9
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Solving for v(k) gives

v(k) = 1

v − 1

v∑

x=1
x 
=k

v(x).

In the same way, we can obtain that

v(l) = 1

v − 1

v∑

x=1
x 
=l

v(x).

So

v(k) − v(l) = 1

v − 1

v∑

x=1
x 
=k

v(x) − 1

v − 1

v∑

x=1
x 
=l

v(x) = 1

v − 1
(v(l) − v(k)),

this gives v(k) = v(l) and the claim is proved. Therefore, there is no current in the edges
connecting the vertices in N and these edges can be omitted. In the same way as the proof
of the claim, we can prove that vertices in V \(S ∪ N) are at the same voltage and edges
connecting them can be omitted too. Furthermore, we will show that there is no current in the
edges between vertices in N and V \(S ∪ N). Suppose that the voltages of vertices in N and
V \(S ∪N) are equal to v1 and v2, respectively. If there are currents in these edges, this means
that v1 
= v2. If v1 > v2, currents flow from N to V \(S ∪ N), but cannot flow back to N,
which is impossible since all the currents should eventually flow to j . Otherwise, v2 > v1 and
currents flow from V \(S ∪ N) to N, which is also impossible since currents flow from i and
they cannot reach V \(S ∪ N) before N. Hence there is still no current in the edges connecting
N and V \(S ∪ N) and these edges can also be omitted. Meanwhile, vertices in V \(S ∪ N)

can be omitted since no current flows into or out of them. Hence, rG
ij = rG∗

ij .

Now suppose that G[V \S] is not complete. We construct a new graph G′ from G by adding
new edges between nonadjacent vertices of V \S, i.e. G′[V \S] is complete. For i, j ∈ S, as
proved above, rG′

ij = rG∗
ij . By Rayleigh’s monotonicity law, on the one hand, rG

ij � rG′
ij and on

the other hand, rG
ij � rG∗

ij . Hence we have rG
ij = rG∗

ij as well. �

By theorem 4.1, we can obtain the following interesting proposition, which may be viewed
as a reduction principle.

Proposition 4.2 (the reduction principle). If S ⊂ V satisfies that all vertices in S have the same
neighborhood N in G − S, then resistance distances between vertices in S can be computed
as in the subgraph obtained from G[S ∪ N ] by deleting all the edges between vertices in N.

Remark 3. In fact, if we modify the resistances of some edges, then we can compute resistance
distances between vertices in S in an even simpler graph than G∗. In this case, we should
view a graph as a weighted graph such that each edge is assigned a weight. Resistance on
each edge is equal to the weight assigned to this edge. Obviously graphs considered before
can also be viewed as weighted graphs with weight 1 assigned to each edge. Since one can
easily see that all vertices of N in G∗ are at the same potential, we can identify them as a single
vertex v0. In the resulting graph, v0 is connected to every vertex of S by n edges, where n is
the cardinality of N. By the parallel connection rule, we can replace these edges by a single
edge with resistance 1

n
. Let G0 be the graph obtained from G∗ by first contracting N to a

single vertex v0 (loops and multiple edges are deleted) and then changing the weights of edges
connecting v0 and vertices in S to 1

n
. For example, see figure 3. Then by theorem 4.1, we have

10
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Figure 4. Illustration for G0 corresponding to G in theorem 3.2.

Theorem 4.3. Let S and G0 be defined as above. Then for i, j ∈ S,

rG
ij = rG0

ij .

By theorem 4.3, we can obtain the following result, which may be viewed as another
reduction principle.

Proposition 4.4. If S ⊂ V satisfies that all vertices in S have the same neighborhood N in
G − S, then resistance distances between vertices in S can be computed as in the subgraph
obtained from G by contracting V − S to a single vertex v0 (loops and multiple edges are
deleted) and changing the resistances of edges connecting v0 and vertices in S to 1

n
.

Note that G0 is a subgraph of G and can be handled in an easier way. An example is
theorem 3.2, which can be viewed as a trivial consequence of proposition 4.4. Clearly, G0 in
the condition of theorem 3.2 is shown in figure 4, and the number on each edge is the weight
(resistance) on it. The left one is the case that i and j are not adjacent and the right one is that
they are adjacent. By serial and parallel connection rules, equations (9) and (10) can be easily
obtained.
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